How to Prevent OT Ransomware Attacks: A Comprehensive Guide
OT ransomware attacks are on the rise. Learn proven strategies to protect your industrial systems, minimize downtime, and recover quickly.
Learn MoreSubscribe to stay in the loop with the latest OT cyber security best practices.
The JSOF research lab recently released a series of vulnerabilities named Ripple20 that are present in a software stack that provides core networking functionality to several different families of devices and vendors.
While the media estimates millions of devices have been effected, embedded products regularly contain a number of vulnerabilities, and many of those vulnerabilities affect far more devices than that of a relatively obscure network stack that was purchased or re-distributed by a few vendors.
It’s one thing if a device is affected by a vulnerability, but another thing if it is in an un-exploitable location. Further, it’s important to determine if the System under Consideration (SuC) has mitigable risks – even if a fix may exist.
Ripple20 is a collection of nineteen vulnerabilities that affect a software implementation of a network stack developed by Treck, Inc. It is a specific piece of software that can be licensed and integrated into an embedded solution as part of a product’s firmware, or into a specific application for distribution.
Most of the Ripple20 vulnerabilities are the result of logic errors and a lack of careful memory management, resulting in attackers exploiting these flaws by transmitting malicious network packets to the device in specific situations. This is not unlike a similar family of vulnerabilities called URG11 (or Urgent11) that was present in certain versions of an embedded operating system (OS) called VxWorks.
It is important to note that Treck, Inc. has a historical relationship with KASAGO TCP/IP software from Zuken Elmic (previously known as Elmic Systems), so further industrial systems may be discovered as vulnerable.
The Ripple20 vulnerabilities have been implemented in slow-to-update embedded firmware and can be exploited if network connectivity is present (and direct in almost all cases).
To exploit these systems, the Treck IP stack requires relatively low expertise to potentially execute the following attacks (at a minimum):
Most concerning is the potential for this stack to deploy in medical devices and industrial control system products. This represents an opportunity for exploitation by enterprising malicious entities with a particularly low barrier to potentially affect hypothetically vast numbers of hosts with catastrophic consequences.
Creating secure products is hard, and fixing flaws in embedded solutions by either the vendor or by an asset owner can be even more complicated. This is the same for nearly any Internet of Things (IoT) product, and nearly any Industrial Automation and Control System (IACS) product on the market today.
Fortunately, many of these devices do not, and should not have direct access to the Internet. They are often deployed in networks where change is slow and easily identified due to their “steady-state” nature. In other words, device behavior or network traffic should remain consistent for long periods of time.
In fact, most of the devices that are likely to run contain vulnerable versions of the Treck IP stack are protected by firewalls, layers of network security, may not even be networked altogether, and can be protected with a well-orchestrated security program with multiple compensating controls.
Secondly, Operational Technology (OT) may have a series of secondary controls and processes to help manage any safety and visibility implications. However, this does not necessarily equate to intrinsic safety nor infallibility.
If one of these systems is in a position where compromise is trivial, either directly, or through another host (which is far more statistically possible, and likely to be a commodity system such as a workstation, or Internet-facing networking equipment), there could be negative consequences.
Not all OT systems will be disclosed as vulnerable, so the best strategy to secure embedded systems is to identify, track, manage, and protect them, even if zero vulnerabilities have been reported in a specific product.
It is one thing to receive an alarm, an event, or a vulnerability report, but it is altogether another to act upon it and be able to effectively reduce cyber security risk in OT/ICS environments.
OT ransomware attacks are on the rise. Learn proven strategies to protect your industrial systems, minimize downtime, and recover quickly.
Learn MoreWhat is OT/ICS vulnerability management, why is it critical in cyber security, and what role does it play in ransomware defense and protection?
Learn MoreA July 2020 ransomware attack forced Garmin to shut down Garmin Connect, as well as some database services, production lines, and call centers.
Learn More